
WINkLink
A decentralised oracle network on TRON

1 July 2023 (v2.0)

Abstract: Smart contracts are one of the most important parts of modern blockchains.
Smart contracts are deployed on blockchains, triggered automatically, and cannot be
modified after deployment. These characteristics make smart contracts the best
solution for traditional digital contracts. However, smart contracts cannot
communicate with data outside the blockchains. Based on this problem, we propose a
solution.

The solution is called an oracle. An oracle connects the off-chain world with smart
contracts. Unlike most existing oracles, WINkLink is a decentralized oracle network
that provides more secure services than conventional ones.

This paper will discuss our upgrade from FluxAggregator to Off-chain Reporting
(OCR) Aggregator, enabling the connection of on-chain smart contracts with off-chain
real-world data through WINkLink nodes.

1



Contents
Contents 2
Introduction 3
WINkLink System Overview 4

Oracle Node 4
Design Philosophy 5

Off-chain Computation 5
Pacemaker 6
Report Generator 6

On-chain Transmission 7
Transmission 7

WINkLink OCR workflow 8
An ideally secure oracle 9
Data Aggregation and Security 10

Data Source 10
Data Aggregation Benchmarking 10
Contract-upgrade service 10

WIN token usage 11
Roadmap and Future Plan 11

Validation system 11
Reputation system 12
Certification Service 13

Conclusion 14

2



Introduction
Smart contracts are applications deployed and executed on decentralized systems.
Once deployed on a blockchain, smart contracts cannot be modified. Compared to
traditional contracts, smart contracts offer increased security as all parties, including
the author, have equal authority. They are automatically executed when they meet the
specified requirements, enabling agreement among all contract participants without
the need for trust.

Smart contracts are unable to retrieve off-chain data, such as information obtained
through APIs. This limitation arises from the consensus mechanism of the blockchain.
To address this issue, we propose the implementation of WINkLink, a decentralized
oracle network.

WINkLink serves as a decentralized oracle network that reduces the reliance on trust
among contract parties. It ensures the security of the entire smart contract execution
process, including the retrieval of data from off-chain sources. This prerequisite is
essential for establishing a connection between smart contracts and the real world,
ultimately replacing traditional digital contracts.

To facilitate the broader application of smart contracts, ensuring the accuracy of
input/output data is crucial. Examples of data requirements for smart contracts
include:

● Securities smart contracts, such as bonds and interest rate derivatives,
necessitate access to APIs for reporting market prices and market reference
data.

● Insurance smart contracts require data feeds concerning IoT data related to the
insurable event, such as confirming whether the warehouse's magnetic door
was locked during a breach or verifying the online status of the company's
firewall.

● Trade finance smart contracts rely on GPS data for shipments, data from supply
chain ERP systems, and customs data regarding the shipped goods, all of which
confirm compliance with contractual obligations.

Payment messages typically need to be transmitted to off-chain institutions, such as
the bank system. WINkLink securely outputs data to off-chain systems, facilitating the
connection to the real world and ensuring the tamper-proof nature of smart contracts.

3



WINkLink System Overview
WINkLink aims to bridge the gap between the on-chain and off-chain worlds, starting
with its deployment on the TRON network and with plans to support other blockchain
networks in the future. The development of WINkLink adheres to a modular
approach, which enables easy implementation of future optimizations and
enhancements.

Oracle Node

Like the blockchain, the oracle network comprises many nodes. Each node has its own
data source set, which may overlap with the others'. An oracle aggregates data from its
data sources and sends the aggregated result to the request. To ensure accuracy, a
request may select multiple nodes. As faulty nodes may exist, it is important to have a
plan in place to mitigate their influence.

To ensure the robustness of the network, WINkLink oracle nodes adhere to the
principles of Byzantine fault tolerance (BFT), forming a peer-to-peer (P2P) network.
Within the P2P network, individual oracles exchange messages with each other over a
network and are identified by their network endpoints, namely a certificate on their
cryptographic key material, enabling them to authenticate with each other. In BFT,

represents the minimum number of honest nodes or processes required to2𝑓 +  1
tolerate up to f faulty or malicious nodes or processes. The value of f represents the
maximum number of faults the system can withstand while preserving its integrity.

By mandating the presence of honest nodes, the system guarantees a2𝑓 +  1
sufficient number of correct nodes to outvote the faulty ones during the consensus
process. This approach ensures the network's ability to reach consensus and make
dependable decisions, even in the face of Byzantine faults.

The choice of is crucial as it represents the minimum threshold for achieving2𝑓 +  1
Byzantine fault tolerance. This balance strikes a balance between system resilience
and efficiency, allowing the network to withstand a specific number of faults while
upholding the overall trustworthiness and consistency of the shared or processed data.

4



Design Philosophy
The design has multiple key goals. It aims to:

● Ensure the protocol's resilience against various failures caused by malicious
actors or software bugs. A security model has been implemented to limit the
number of faulty oracles without restricting the types of faults.

● Create a simple and easily implementable design that can be quickly deployed
to meet market demands. Choices are made based on simplicity to reduce
defects in the system. For instance, on-chain communication is simplified by
using Trongrid HTTP and gRPC endpoints instead of hosting a full node.

● Minimize transaction fees by leveraging the virtually free communication
between oracles and off-chain computation, while considering the involvement
of Tron transactions when communicating with a specific entity (referred to as
"C"). Despite Tron transactions having low gas fees, efforts are made to
maintain low overall transaction fees, even if it necessitates more off-chain
computation and networking resources

● Reduce latency as much as possible to minimize the time between initiating the
signing protocol and including the transaction on the blockchain. This is
important for providing up-to-date data to DeFi trading platforms. The
protocol's performance is primarily limited by network transmission latency,
which is minimal due to the small amount of transmitted data. The aim is to
achieve a report generation time within a few seconds, including the time
needed to transmit the report to "C."

The development was broken down into two main areas: Off-Chain Report
Computation and On-Chain Report Transmission.

Off-chain Computation

Within the Off-chain Computation, we can further break it down into two components

that manage report creation. Namely:

1. Pacemaker

2. Report Generator

5



Pacemaker

The oracle report generation for contract C is facilitated by the pacemaker protocol,
which divides the process into epochs with designated leaders. While it does not
guarantee consensus, the protocol relies on contract C to resolve any ambiguities
during epoch transitions. The pacemaker protocol continuously runs and periodically
initiates new epochs and corresponding report generation instances. It monitors
progress through events and can abort the current instance if insufficient progress is
observed. The pacemaker protocol does not directly send reports to C but instead
hands them off to the transmission protocol. Additionally, it responds to change of
leader events, signaling the end of an epoch and allowing for the initiation of the next
epoch with potentially new instances and leaders.

Report Generator

The Report Generation process is divided into epochs, with each epoch having a
unique identifier and a leader node. The protocol operates in rounds within each
epoch, where observations are collected. From the observations, a median value is
reported, and a signed oracle report is generated. The report is then handed over to the
transmission protocol for delivery to C, provided certain conditions are met.

By selecting the median from a set of more than observations, the protocol2𝑓
guarantees that the reported value is reasonable since Byzantine oracles cannot
manipulate it beyond the range of observations submitted by the honest oracles.

The frequency of rounds and observation gathering is controlled by the leader and a
timeout value. The timeout value must be smaller than the progress timeout and larger
than the network latency required to complete a full iteration of the report generation
protocol, with an additional safety margin.

Once a sufficient number of observations are gathered, the report is transmitted to C
through the transmission protocol, including enough oracle signatures for verification.
However, the leader and oracles only generate and participate in producing the report
if there is a significant change in the data-stream value or a specific time interval has
passed since the last report by C. This helps prevent unnecessary reports.

6



On-chain Transmission

Transmission

Finally, after Report R is generated, the report generation algorithm initiates the
transmission protocol simultaneously across all oracles, assuming ideal conditions.

To minimize gas expenses and avoid unnecessary transmissions, the algorithm
incorporates a filtering mechanism for incoming reports. This is particularly valuable
when multiple rounds yield similar reports in quick succession. Only the initial report
requires transmission, while subsequent reports are disregarded.

The algorithm maintains a record of the most recent incoming report (referred to as L).
To pass through the filter, a report (designated as O) must meet either of two
conditions. Firstly, if C has already received a report that is at least as recent as L,
indicating the absence of a report backlog. Secondly, if O demonstrates a significant
deviation in the median observation value compared to the median value in L.

Once the filter conditions are met, a random node from the oracle network is chosen
as the transmitter to submit the report to the blockchain. This approach significantly
reduces gas consumption since only one transaction is needed, even though multiple
nodes have contributed their responses.

7



WINkLink OCR workflow

8



An ideally secure oracle
An instructive and principled way to reason about oracle security stems from the
following thought experiment. We consider a hypothetical scenario where there exists
a trusted third party capable of consistently performing instructions honestly. This
idealized oracle, referred to as an ideal oracle, obtains data from a trustworthy data
source and ensures its security through the following tasks:

● Accept request: The ideal oracle ingests a request from a𝑅𝑒𝑞 =  (𝑆𝑟𝑐,  τ,  𝑞)
smart contract USER-SC, which specifies a target data source , a time or𝑆𝑟𝑐
range of times , and a query .τ 𝑞

● Obtain data: The ideal oracle sends the query to the specified data source𝑞 𝑆𝑟𝑐
at the designated time .τ

● Return data: Upon receiving the answer a, the ideal oracle returns it to the
smart contract.

The ideal oracle plays a crucial role as it serves as a vital bridge between the data
source and the USER-SC, providing accurate and timely data.

In many scenarios, the requested data is not suitable for public access. To maintain
confidentiality, the ideal oracle ensures that data requests are always kept secure.
Requests are encrypted, and the ideal oracle holds the public key necessary for
decryption.

An ideal oracle should always be available, without any downtime, and should not
deny any requests that come its way.

However, it is important to acknowledge that there is no data source in the world that
can be considered 100% trustworthy. Data carries inherent risks of tampering due to
various possible factors such as vulnerabilities or cheating on websites. Additionally,
it is unrealistic to expect a perfect third party to run an oracle.

While the ideal oracle does not exist in reality, our aim is to make WINkLink come
closer to embodying its principles and ideals.

9



Data Aggregation and Security
WINkLink proposes two approaches to avoid the appearance of faulty nodes:
distribution of data sources and oracles.

Data Source
We can obtain data from several different data sources to mitigate the impact of an
abnormal data source. An aggregating function can aggregate the results into a single
output. There can be many ways to do aggregation, such as calculating the weighted
average after removing abnormal data.

Data sources may obtain data from each other, and this causes the aggregated result
inaccurate. WINkLink will concentrate on solving these problems, and report on the
independence of data sources.

Data Aggregation Benchmarking
Given a 7 oracle node network, FluxAggregator will need to transact 7 times onto the
chain to fulfill the price feed. However, OCR will only require 1 transaction to
achieve the same goal. This translates to ~110 TRX gas consumption on OCR while a
total of ~350 TRX on Flux, resulting in approximately 65% gas cost savings. With
more nodes, the cost savings will be even greater as the transaction ratio is 1: , where𝑛
is the number of nodes.𝑛

Contract-upgrade service
Once deployed, no one can control the actions of smart contracts, highlighting the
importance of oracle security. An oracle providing incorrect data can cause significant
losses for a decentralized exchange.

For security reasons, WINkLink proposes a contract-upgrade service. This service will
be managed by organizations that launch WINkLink nodes and adhere to WINkLink's
decentralized design philosophy.

Numerous smart contract hack events have demonstrated the existence of significant
security risks. This is precisely why we propose the contract-upgrade service.

10



The contract-upgrade service is optional, allowing users to decide whether to activate
it based on their needs.

When vulnerabilities are discovered, the contract-upgrade service will deploy a new
set of oracle contracts. Both versions of the contracts will coexist and be available for
use. With the philosophy of decentralization, users will have a flag to control their
selection of requesting contracts from either set.

WINkLink is a decentralized oracle network. The decision to use the new version lies
with the user rather than the contract developer. Additionally, we anticipate that
providers will be able to support multiple versions of WINkLink-SC developed by the
community.

WIN token usage
WIN is a TRC-20 token. The WINkLink network utilises the WIN token to pay
WINkLink Node operators for the retrieval of data from off-chain data feeds,
formatting of data into blockchain readable formats, off-chain computation, and
uptime guarantees they provide as operators. WINkLink will power WIN token in
many ways.

Roadmap and Future Plan
For the future roadmap of WINkLink Oracle will be focusing on the following areas:

1. Improving the safety and reliability of the oracle
2. Increasing the variety of quality data source for the oracle ecosystem
3. Improving the ease of use to integrate with WINkLink oracle to serve the mass

market use case on oracle

Validation system
The validation system should monitor the on-chain behavior of oracles, providing
objective performance metrics to assist users in their selections. The monitoring
process will encompass two perspectives:

11



1. Availability: This involves tracking oracle failures and providing prompt
responses to user queries.

2. Correctness: This entails recording any deviations observed in comparison to
other oracle nodes.

WINkLink-SC has the capability to monitor the activities of all oracles. The statistics
regarding availability and correctness will be publicly available and published on the
blockchain.

Reputation system
The reputation system aims to record user ratings of oracle service providers and
nodes. Reports generated by the validation system can serve as the primary factor in
determining reputation. Additionally, other information such as users' familiarity with
the brand, operating entities, and architectures of oracles may also be considered.
The reputation system can provide reports obtained from other smart contracts.
Furthermore, we acknowledge the need to analyze massive amounts of data and thus,
consider calculating reputation metrics off-chain.

For a given oracle operator, the reputation system initially proposes support for the
following metrics. These metrics can be evaluated at the granularity of specific
assignment types as well as in general for all types supported by a node:

1. Total number of assigned requests: This refers to the overall count of past
requests, including both fulfilled and unfulfilled ones.

2. Total number of completed requests: This represents the total number of
requests that have been fulfilled.

3. Total number of accepted requests: This measures the number of fulfilled
requests that were ultimately accepted by the user.

4. Average time to respond: This metric calculates the average response time
based on completed requests that were not accepted.

5. Amount of penalty payments: This metric captures the total amount paid by the
service provider as penalties.

The reputation system will incentivize oracle service providers to maintain higher
availability and performance standards. We hope that the reputation system will serve
as a guide for users in selecting nodes and services.

12



Certification Service
The oracle node is vulnerable to Sybil attacks, wherein an attacker aims to gain
control over the oracle pool by manipulating multiple nodes that appear independent.
By providing inaccurate data at specific times, these nodes can influence large
transactions in high-value contracts.

To minimize costs, a Sybil attacker may employ a technique known as mirroring,
where an oracle node is compelled to retrieve data from a single source but presents it
as if it came from multiple sources. Mirroring provides benefits to the adversary
regardless of whether they choose to transmit false data.

The Certification Service offers endorsements based on various aspects of oracle
deployment and behavior. It will monitor the statistics of the Validation System
concerning oracles and conduct post-hoc spot-checking of on-chain answers,
particularly for high-value transactions. This involves comparing the responses with
answers obtained directly from reputable data sources.

In addition to reputation metrics and automated on-chain/off-chain systems for fraud
detection, the Certification Service is designed to identify Sybil attacks and other
malicious activities that automated on-chain systems may not detect.

13



Conclusion
We introduce WINkLink, a decentralized oracle network that encompasses both
on-chain and off-chain components. We outline our commitment to security and
decentralization, as well as highlight existing design flaws and our plans for future
developments.

Decentralization serves as the fundamental principle of both blockchain technology
and WINkLink. We remain steadfast in our dedication to decentralization and strive to
enhance the performance and security of the oracle network.

WINkLink is a project that builds upon the achievements of pioneers in the field. We
highly value our community and will continue to develop WINkLink in an
open-source manner. We greatly appreciate any reviews and suggestions from the
community, as we believe that collaboration will propel the advancement of
blockchain and smart contracts.

14


